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Abstract

Object detection over a long-tailed large-scale dataset
is practical and challenging, which is, however, under-
explored comprehensively.  Recently proposed methods
mainly focus on eliminating the imbalanced classification
problem. However, they do not take the quality of the pre-
dicted bounding boxes into consideration. Inspired by ob-
servation in Cascade architecture, “detectors with differ-
ent I0U thresholds have each favor to different quality of
bounding boxes”, this paper first reveals the issue due to
the unbalanced data distribution: the predicted bounding
boxes’ accuracy will be essentially different between cate-
gories. Thus, for example, the detector may predict inac-
curate bounding boxes on the categories with fewer train-
ing data, and the corresponding extracted visual features
will further damage the classification accuracy. To over-
come such a problem, we introduce a Multi-Expert Cascade
framework (MEC), a novel 10U-aware detector that re-
weights each category’s training process on different stages
and achieves a better stage ensemble performance by lever-
aging dynamic ensemble mechanisms at the inference time.
Extensive experiments on the recent long-tailed large vo-
cabulary object detection dataset show that our proposed
MEC framework significantly improves the most widely-
used detectors’ performance over various backbones on ob-
Jject detection and instance segmentation tasks.

1. Introduction

Object detection is one of the most significant and chal-
lenging branches of computer vision tasks, which has wide
applications in our daily life, e.g., robotics, monitoring se-
curity, autonomous driving. The goal of the object detec-
tion task is to recognize and locate objects of a set of pre-
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Figure 1. (a) shows that the performance of Cascade R-CNN of
different frequencies on different stages. Besides, it points out
that there is an imbalanced detection problem in the multi-stage
detector. (b) presents the performance comparison between Cas-
cade R-CNN and Cascade R-CNN with our approach (Both with
ResNet101 as the backbone).

defined categories. Many of the recently proposed object
detectors [43, 48] achieve promising results on some well-
known benchmarks such as COCO [29] and PASCAL VOC
[12]. These datasets are created by carefully selected, and
the number of training samples of each category is relatively
balanced. However, the data tends to be highly imbalanced
in the real world, with a very long-tailed class distribution.
Under this circumstance, many existing architectures may
fail to achieve expected performance.

As for the object detection task, the challenge of training
detectors on a long-tailed dataset largely derives from two



aspects. The first one is the imbalanced classification prob-
lem. This problem comes from the biased distribution of
data across the known categories, which causes the classi-
fier to remain under-trained on tailed categories with fewer
data and makes the model tend to bias towards head cate-
gories (classes with numerous training samples). The sec-
ond one is the imbalanced detection problem. Due to the
insufficient training on the categories with fewer training
data, the detector tends to predict the bounding boxes with
unideal accuracy. Such inaccurate bounding boxes will fur-
ther damage the classification performance.

In recent years, many approaches have been proposed to
solve the imbalanced classification problem, such as [16,

,22,24,42 47]. First, Agrim et al. [16] introduces a dy-
namic sampling factor that increases the probability to sam-
ple images with rare data during training. After that, Kang
et al. [23], Zhou et al. [47], and Li et al. [24] point out that
the image-wise re-sampling methods will damage the rep-
resentation, and then they decouple the learning procedure
into representation learning and classification learning. Re-
cently, Tang et al. [42] argued that the imbalanced classifi-
cation problem comes from lousy momentum causal effect
and proposed de-confounded training and total direct effect
inference to eliminate the causal effect.

Although many works proposed methods to solve the im-
balanced classification problem, the imbalanced detection
problem still has not been revealed. We take the architec-
tures of Cascade mechanism [5, 8] which are perennial win-
ners on the leaderboard as the starting point and provide
some interesting observations. As shown in Figure 1 (a), we
train various detectors with different foreground thresholds
on a long-tailed dataset, and the result shows that the perfor-
mance of each category will depend on the IOU threshold.
For example, rare (categories with fewer training samples)
instances perform better when the detector is trained with a
lower IOU threshold, while frequent instances are the op-
posite. We argue that, at testing time, it is hard for a de-
tector to predict the bounding boxes with high accuracy for
rare instances. This induces that the detector trained with
a lower IOU threshold achieves better performance for rare
categories. In conclusion, there is an IOU-aware problem
when the Cascade architectures [5,8] face the instances’ im-
balanced distribution.

This paper proposes a novel multi-expert and IOU-aware
detection framework called Multi-Expert Cascade (MEC)
to address the imbalanced detection problem. The first key
component of the MEC framework is multi-expert. First,
we divide the classifier into multi-group according to the
categories’ amount of data. After that, we train the multi-
stage detector with the expert loss, which re-weights the
gradient in the training process for each category on dif-
ferent stages so that each classifier can emphasize specific
categories. The second component, a dynamic ensemble

mechanism to control the ensemble weights between these
expert classifiers in the inference time to improve the effec-
tiveness of the “expert” detectors. A simple comparison be-
tween standard Cascade R-CNN and our Multi-Expert Cas-
cade on LVIS is provided in Figure 1 (b). Finally, we char-
acterize the main contributions of our method to long-tailed
object detection as follows:

* We unveil the imbalanced detection problem which
means different frequencies of each category are sen-
sitive at different heads in a multi-stage detector archi-
tecture.

e We propose a novel end-to-end framework, Multi-
Expert Cascade (MEC) to tackle the imbalanced de-
tection problem. MEC consists of two components:
the multi-expert loss for training and the dynamic en-
semble mechanism at inference.

* To produce an IOU-aware multi-stage detector, we uti-
lize a unique multi-expert loss in the training process
and learn the classifiers with different IOU thresholds
equipping with the ability to be an expert on specific
categories.

* The proposed dynamic ensemble mechanisms can ex-
ert the advantage of MEC by dynamically controlling
the weight for each group in the classifiers in the infer-
ence phase to achieve better performance.

e The proposed method for lond-tailed detection
achieves state of-the-art experimental results over ex-
isting techniques on two standard benchmark datasets,
LVIS [16] and COCO-LT [24].

2. Related work

Object detection With the evolution of convolution neu-
ral networks, a great deal of success has been achieved
in object detection [19, 39]. According to the character-
istics, it can be divided into two categories. Unlike the
one-stage based detector, which features real-time and ef-
ficient [30, 33-35], the most state-of-the-art detector in the
detection task follows a two-stage regime, proposed region
proposal, and classification. R-CNN series [14, 15, 18, 36]
provided promising results on object detection. Based on
that, some popular frameworks [5, 8] further improve the
performance by multi-detection-head with proposed region
refinement, iteratively.

Distribution re-balancing and losses re-weighting Re-
sampling and Re-weighting are two common methods to
alleviate the impact of the unbalanced data. Re-sampling
in the early studies includes under-sampling [ 1] for head
categories, and over-sampling [7, 17,3 1] for tail categories.
Recently, Shen et al. [37] proposed class-balanced sampling
to weight the sampling frequency of each image accord-
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Figure 2. MEC consists of two components. (a) In the training phase, we leverage the observation that different orders of magnitude of
categories favor different IOU thresholds to optimize each detector as the multi-expert loss. (b) In the inference process, we utilize an
dynamic ensemble mechanism to exert the advantages from MEC training effectively.

ing to the number of samples of different categories, and
Gupta et al. [16] proposed repeat factor sampling (RFS),
a dynamic-sampling mechanism, to balance the instances.
However, re-sampling is not a reliable solution. The tail
categories are often learned repeatedly, lacking sufficient
sample differences and not robust enough, and the head
categories are often not sufficiently learned. Re-weighting
methods, such as Hard Example Mining [38], Focal loss
[27], and LDAM [6], is mainly adopted in the loss of clas-
sification by re-weighting based on category distribution.
Unlike sampling, because of the flexibility and convenience
of loss calculation, many more complex tasks, such as ob-
ject detection and instance segmentation, are more likely to
leverage the re-weighted loss to solve the unbalanced prob-
lem. Furthermore, due to implementation is easy, some
works [10, 21, 40] show competitive results in complex
tasks.

Training strategies for long-tailed representation learn-
ing Recent works [23,25,47] showed that the re-balancing
methods damage the representation learning since chang-
ing the data distribution. Kang et al. [23] divides the learn-
ing process into two steps. The first step is using raw data
(unbalanced) for representation learning. Furthermore, the
second step leverages the class-balanced sampling mecha-
nism for classifier learning. Based on the same assumption,
Zhou et al. [47] transforms the two-step learning into a two-
branch model to achieve an end-to-end training schema. Fi-
nally, one study adds another classifier to calibrate predic-
tion logits [46]. Unlike the two-stage training strategies, Hu
et al. [20] regards the learning of long-tail distribution data
as a form of incremental learning, which learns common

data first and then learns to recognize the rare categories
based on previous knowledge. Also, Tang et al. [42] counts
the moving average vector of a feature based on the tra-
ditional training framework, and this average feature will
not participate in the gradient calculation during the end-to-
end training. Recently, Li et al. [25] proposed the BAGS,
which calculate only for the categories with the same or-
der of magnitude instead of for all categories, to achieve a
better-balanced classification learning. BAGS mainly fo-
cuses on designing classifiers to account for data imbal-
ance when solving long-tail tasks. It does not explicitly
address the problem of data imbalance of the multi-stage
detector. However, we instead observe the detection imbal-
ance problem—different orders of magnitude of categories
favor different IOU thresholds, as shown in Figure 1. We
are thus motivated to design the MEC to account for such
detection imbalance problems for multi-stage detectors.

3. Methodology

In this section, we introduce our Multi-Expert Cascade
(MEC) for addressing the imbalanced detection problem.
Firstly, we begin by revisiting the standard multi-stage de-
tector’s preliminary in Section 3.1, the well-known Cas-
cade R-CNN. Next, going through the MEC approach,
which consists of two critical components: multi-expert
loss and dynamic ensemble mechanism in Section 3.2 and
Section 3.3, respectively.

3.1. Preliminary

Cascade R-CNN [5] is the well-known fundamental
multi-stage detection model. In Cascade R-CNN, they de-



compose the difficult regression task into a sequence of
simpler steps, and each step focuses on a different IOU
proposal. In this way, Cascade R-CNN prevents the de-
tection head from heavily tilting toward low-quality clas-
sifiers. In the stage f, the R-CNN includes a classifier h
and a box regressor optimized for IoU threshold u’, where
u? > ut~!. Therefore, given a training set (z;, y;), Where
x; is the roi feature of i-th bounding box and y; is the
corresponding ground truth class label, we can train the
model by minimizing a classification cross-entropy loss as
Les(h*(2:), y;) = CrossEntropy(h*(z:), y:).

In the inference time, due to each stage focuses on a dif-
ferent IoU range, we empirically ensemble these stages to
get higher performance. To be more specific, once the pre-
diction logits of of i-th roi feature in the head t from classi-
fier ht(z;) obtain, we can formulate the ensemble score S;
in the inference phase as S; = + Zle o (o), where o is
the Softmax activation function.

As shown above, we notice that, in Cascade R-CNN, the
classification loss for each stage is identical, and the ensem-
ble weight for each stage is equal. However, as the discus-
sion in Section 1, we observe that categories with different
amounts of training data may have different IOU thresh-
olds favors. For example, rare data may perform better in
the stage with a lower IOU threshold and perform poorly in
the stage with a higher IOU threshold since the predicted
bounding box has low precision. Therefore, using identical
classification loss on categories for each stage and equaliz-
ing the predicted scores in the inference time may impede
the final prediction or even damage the performance.

3.2. Multi-expert cascade formulation

When the distribution of categories is relatively imbal-
anced, e.g. a long-tailed dataset, the performance of these
categories is highly correlated with the IOU between pro-
posal and ground truth bounding box, which is shown in
Figure 1 (a). To utilize this characteristic, we propose the
Multi-Expert Cascade network, which enhances the positive
and negative gradient for particular categories to equip each
stage with the ability to focus on specific categories. Our
framework architecture is illustrated in Figure 2.

For a multi-stage model H with N stages, we define Hj,
to represent k-th stage. After that, we divide all the cate-
gories into N groups according to the amount of their train-
ing instance. We assign categories ¢ in G,, (n-th group) if
ln <0(i) < lpy1, n > 0, where §(¢) is the number of
instance in training set for category ¢, and [, and [, are
hyper-parameters to determine minimal and maximal num-
ber of instance for group n, respectively. For clear expla-
nation later, we further define j-th group set G; as a set
containing G; of all the stages. Following the setting in
BAGS [25], we set {; =0, Iy = 10!, I, = 102 and I = +o0.
Also, throughout this paper, we set N = 3. Under this set-

ting, G, contains the categories with the amount of training
data from O to 10, and G is 1-st group set which includes
three G; from H;, H,, and Hj.

Inspired by the observation in Figure | (a), we define
our expert group G as the group G; in the stage H;. In each
stage, we enforce the classifier to pay more attention to the
expert group. To achieve this idea, we make an additional
prediction from each stage. In simple terms, given an input
instance © € R?, we will have the outputs from each stage
as of’* € R k = 1,..., N. Furthermore, we can define
the conventional prediction from the k-th stage piH * and the
prediction within the group ﬁf{ * as follows:
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After that, our expert prediction can be formulated as fol-
lows:
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with hyper-parameter A which used to control the weight
between p’* and pr-.

To maximize the probability of expert prediction ﬁf{ kS
we apply the cross-entropy loss on it and the multi-expert
loss becomes Loy, = — Z,]jzl 270:1 Yi logﬁf{’“.

Through the equation (2), we can successfully strengthen
the performance of each head on each expert group by
adding probability to re-weight the original cross-entropy
loss. As shown in Figure 2, take H; for an example, we
combine an external cross-entropy loss on H; within the
rare group G; when the input sample belongs to the rare
categories. This multi-expert loss will force the H; to not
only make a correct prediction against the whole categories
but also predict accurately at the rare group G .

3.3. Group alignment and dynamic ensemble

We first apply group alignment (GA) to the classifiers’
predicted logits in the inference phase and then utilize a
dynamic ensemble mechanism to get the final prediction
scores. We will go through the details of these modules
as follows.

Group alignment In MEC, the multi-expert loss equips
our classifier with the ability to better distinguish the cate-
gories in each expert group by enlarging the difference be-
tween the maximum value and the average value. There-
fore, we perform group alignment to calculate this differ-
ence which will be set as the new predicted logits for the
further ensemble mechanism if category ¢ in the group G;,



the logit of this categories o, after the group alignment can
be formulated as follows.

0i =0 — ~— ) 0i, 3)

where Ng, is the number of categories in group G;.

Dynamic ensemble inference As illustrated in Figure 2
(b), after applying group alignment, we try to ensemble
these stages to achieve better performance. Instead of di-
rectly ensemble by an average self-ensemble as standard
multi-stage such as architecture [5, 8], we propose two en-
semble approaches. One is the sparse ensemble mechanism,
and the other is the dynamic ensemble mechanism. Differ-
ent from the average self-ensemble, both of them can effec-
tively exert the advantages from Multi-Expert cascade train-
ing. For the sake of introducing them simply, we formulate
the logit of class ¢ in the head H}, as of * and define the logit
set in a group as Ogj’“ = {of*|i € G;}, where group G; is
the class set of j-th group,and k = 1,..., N.

First, the sparse ensemble mechanism is an intuitive
mechanism. It believes that each head is an expert at the
group we are assigned. Hence, the output is composed of
three different experts sparsely. The inference output be-
comes

spame k Hk k _ 1
E , where e; = { 0

Secondly, the dynamic ensemble mechanism tries to uti-
lize the characteristics of our Multi-Expert Cascade model
smoothly. In other words, the multi-stage module now can
better distinguish the category of the input instance in each
expert group by enlarging the difference between the high-
est logit and the mean of all logits. As shown in Figure 2
(a), to obtain the highest logit in each group, we first exploit
the LogSumExp (LSFE) as the smooth maximum function,
and then the logit of i-th category on k-th stage will become
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with temperature 7. Different from the sparse ensemble
mechanism, the dynamic ensemble mechanism will con-
sider the weight from each head; Moreover, it is between
the average self-ensemble and the sparse ensemble mecha-
nism.

After the ensemble mechanism, the output probability
vector can now be formulated as S¢ = (o), where o
is a softmax activation function and £ means the ensemble
mechanisms we proposed. Furthermore, it will be fed to the
following post-processing steps such as NMS to make the
final detection results.

4. Experimental Settings

Datasets. We perform extensive experiments on the
recent Large Vocabulary Instance Segmentation (LVIS)
dataset [16] and COCO-LT [25] dataset. (i) LVIS v1.0
contains 100,170 training images and 19,809 validation im-
ages. Furthermore, LVIS contains 1,203 categories with
both bounding box and instance mask annotations. These
categories are divided into three groups based on the num-
ber of images that contain those categories: rare (1-10),
common (11-100), and frequent (>100 images). In the eval-
uation phase, We use official metrics mAP as the measure-
ment metric. Also, we calculate AP for each group: AP,
(AP for rare classes), AP. (AP for common classes), and
AP; (AP for frequent classes). (ii) To validate methods on
the dataset with long-tailed distribution, we create COCO-
LT dataset, which is a subset of COCO, by following the
construction methods in BAGS [25]. COCO-LT follows
long-tail distribution just like LVIS and contains 16,966
training images of 80 categories, including 128,615 train-
ing instances. More details about the datasets are provided
in the supplementary materials.

5. Results and Analysis
5.1. Effectiveness of MEC

This section demonstrates the effectiveness of our pro-
posed framework by applying MEC in two different set-
tings: (i) different backbones and frameworks. (if) different
classification methods on the long-tailed dataset. There is a
detailed analysis of the results with reference to Table 1.

Is the proposed method flexible in other frameworks?
Yes. The MEC can adapt effectively to different backbones

i and frameworks. (i) We apply our MEC to the well-known

multi-stage model such as Cascade R-CNN and hybrid task
cascade (HTC). As shown in Table 1, our model consis-
tently improves the performance on all models, especially
on rare and common categories. Take model (3) and (4) for
example. With the help of our MEC module, the baseline
Cascade R-101 model achieves +4.3 improvement on the
rare mask AP. (if) We incorporate our MEC with recently
proposed long-tailed classification methods, most of which
focus on eliminating the classifier imbalanced problem. As
shown from model (9) to (14) in Table 1, our method stills
improve each model significantly (rare categories in partic-
ular), which verifies that our model does not conflict with
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Table 1. Comparasion of the performance gain brought by the MEC and other long-tailed classification methods on multiple backbone
networks on LVIS v1.0. Note that AP™ denotes the score on the instance segmentation task. The T denotes reproducing the results from
their official code, and * represents re-implementing by us. Also, v’ and x mean the method is combining with MEC or not.

other SOTA methods. These results signify the effective-
ness of our Multi-Expert cascade network on a long-tailed
distribution dataset and indicate the compatibility of our
MEC with other long-tailed classification methods.

5.2. Comparison with other LT methods

In this section, we conduct experiments on the LVIS v1.0
dataset [16] and comparing with multiple state-of-the-art
methods, which mainly tackle the classification imbalance
problems, including repeat factor sampling (RFS) [16], Fo-
cal Loss [27], Equalization Loss [40], Seesaw Loss [44],
Classification Calibration Head [45], De-confound [42],
and BAGS [25]. For the fair comparison, we report all the
results on object detection and instance segmentation with
Cascade R-CNN with R-50-FPN as the backbone in Table 2.

Can we learn better representation by MEC? As il-
lustrated in Table 2 (a), we observe that our method
not only outperforms the conventional re-sampling/re-
weighting (model (2-5)) but also exceeds the recent pro-
posed gradient re-weighting methods such as EQ Loss
(model (6)) and seesaw loss (model (7-8)) by a significant
margin, especially on rare and common categories. The cur-
rent methods, BAGS and De-confound, are shown in the
model (10, 11). For model (10), even though the perfor-
mance on rare and frequent data of our MEC is slightly
lower than BAGS, our methods surpass the BAGS by 1.6 on
common categories. The final mask mAP score accordingly
outperforms the BAGS by 0.5. For (11), the De-confound-

TDE method improves AP on rare, common, and frequent
categories. Nevertheless, De-confound still has room for
improvement on rare categories because of not consider-
ing the impact of the imbalanced detection problem. These
comparison results not only verify that a better representa-
tion can be obtained by our MEC but also points out tack-
ling imbalanced detection problem is necessary for object
detection task on such imbalanced dataset. Furthermore, as
the results are shown in both Figure 3, our MEC predicts a
more detailed instance than the standard cascade model. For
example, our MEC successfully segments the“life jacket”,
“wet suit”, “raft” and “kayak” (common category), in the
contrast, the standard cascade model is misclassified as
background. Again, these examples verify that our pro-
posed model can predict common/rare objects better than
the basic cascade model.

How well does our method perform? Our MEC results
are shown in model (12), which boosts the AP, and AP,
significantly and slightly improves the AP, by 0.4. Since
our method tackles the imbalanced detection problem and
does not focus on the classifier weight imbalance. We re-
port our MEC with cosine classifier as same as the seesaw
loss in the model (8). The proposed method leverages the
discovery as mentioned in Figures 1, and the overall results
outperform other long-tailed methods signify the essence of
tackling the imbalanced detection problem.



Mulit-expert Cascade R-CNN

Figure 3. Qualitative comparison on LVIS v1.0. The visual results demonstrates the proposed method (Bottom) and basic Cascade
R-CNN (7op) on a dense instance segmentation example containing common/rare category.
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(11)|De-confound-TDET [42]| 25.0 |14.2 24.6 30.0|28.2
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v 21.5 3.6 21.1 29.8 240
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ANENENENEN

v | 213 29 20.6 30.2 23.9
v V| 217 52 219 28.7 24.2
v v | 223 54 223 298 25.0

(©)

Table 2. (a) Comparison with STOA methods on LVIS val set. (b) The results on COCO-LT. (c) Ablation studies of MEC on LVIS val
set. The Exp., DI, SI, and GA represent multi-expert loss, dynamic inference, sparse inference, and group alignment. We denote AP™
as average mask precision, for instance, segmentation. Also, note that T denotes reproducing the results from their official code, and *

represents re-implementing by us.

5.3. Evaluation on other LT object detection task

To further verify the generalization of our method, we
build a COCO-LT dataset, which has similar long-tailed dis-
tribution as LVIS, by sampling images and annotation from
COCO [29] dataset. The statistical results will be provided
in our supplementary. As the results are shown in Table 2
(b), we observe that our MEC still improves the baseline
method, especially on rare categories, which confirms our
MEC’s ability on the long-tailed dataset.

5.4. Ablation Studies

To elaborate MEC, we perform several ablation studies
in this section. For the following experiments, our default
model is the Cascade R-CNN with R50-FPN backbone.

What is the gain from the each component of the MEC?
Table 2 (c) lists the performances and compares contribu-
tions of the deployed modules in our Multi-Expert cascade
network. To confirm our introduction and enforcement of
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Figure 4. Ablation studies of different \ in the multi-expert loss
on the LVIS validation set. Note that we use “(m)” to represent the
mask average precision for instance segmentation.

Model | #of stage | mAP AP, AP, APy mAP™ AP!" APT" APY
Baseline 3 221 14 196 343 19.7 1 180 299
MEC 3 250 55 245 341 223 54 223 298
Baseline 4 223 1.1 19.6 346 19.8 1 18.1 299
MEC 4 26.1 69 258 349 232 6.7 233 302

Table 3. Experiments with various number of stages.

expert loss during training, we apply this objective function
to the baseline model (first row) and report the results in
the third row of Table 2 (c). Moreover, with the dynamic
ensemble, the inference phase of our Multi-Expert Cascade
network is enhanced, with results listed in the fourth row
of Table 2 (c). Furthermore, we report the performance
of the dynamic ensemble with group alignment in the fifth
row of Table 2 (c). In the last two rows in Table 2 (c), we
also demonstrate the performance comparison between two
types of the proposed inference mechanism. Also, to ver-
ify the generalization of the dynamic inference and group
alignment, we apply them on the cascade R-CNN baseline,
as shown in the second row of Table 2 (c). The result shows
that the methods improve the baseline model by 1.3 in mask
mAP. Also, the export loss further improves such a baseline
model from 21.0 to 22.3 in mask mAP. By comparing the
performances listed in Table 2 (c), we see that the full ver-
sion of our MEC achieved the best performance in terms of
both object detection and instance segmentation. Thus, the
design of our MEC can be successfully verified.

How is the intensity of expert loss “)\” affected? The in-
fluence of different expert threshold A is shown in Figure 4.
In this section, we utilize the dynamic ensemble for the test-
ing. After that, we train our MEC with different A on the
LIVS dataset and report each model’s performance. As a
result shown in Figure 4, our Multi-Expert cascade achieves
the best mAP score when A = 0.7. Therefore, we use \ =
0.7 as our default setting for all the experiments.

6. Discussion

In this section, we provide some discussion to the com-
mon concerns. The experimental results echo our motiva-
tion and validate the proposed approach, MEC.

Dose our MEC improve the performance on rare cat-
egories mainly because the lower threshold stage allow
more data sampled during training? To clarify this con-
cern, we analyze a Cascade R-CNN baseline model and cal-
culate the number of predicted bounding boxes of rare cat-
egories on each stage. We found that the average ratio of
rare predictions for three stages is 1:1.008:1.078. In other
words, after the box regression at each stage, the number of
rare predicted boxes increases in general during the train-
ing process. Therefore, we set the rare expert head to the
stage with a lower IOU threshold has nothing to do with the
number of samples because each head has almost the same
number of sampled data.

How is the generalized ability of MEC when applying on
the detectors with different numbers of stages? In Table
3, we conduct the experiment on a 4 stages detector and
compare it with the results of 3 stages detector. Note that
we divide all the categories into 4 groups according to the
method described in Section 3.2, and we set the I3 = 500
and l; = +oo. For both MEC models with 3 and 4 stages,
we apply dynamic inference and group alignment in the
testing phase. The results show that MEC achieves 3 and
4 improvements on mAP when using 3 stages and 4 stages,
respectively. In this paper, we set our MEC baseline as 3
stages detector to lower down the computation cost.

7. Conclusions

This paper improves the multi-stage detector framework
by the proposed multi-expert cascade (MEC) for long-tailed
object detection. The proposed approach is specifically de-
signed to address the issue of imbalanced detection and ex-
plore the subtle relationship of performance variation be-
tween IOU threshold and data frequency. The solid and con-
sistent detection improvements of the MEC on the challeng-
ing LVIS and COCO-LT suggest that modeling the corre-
sponding relationship between categories and their respec-
tive occurring frequency is required to advance long-tailed
object detection. MEC is shown to be advantageous to sev-
eral object detection architectures on long-tailed distribu-
tion datasets. We believe the introduction of MEC can help
advance our understanding in better solving a broad range
of long-tailed object detection tasks.
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Appendix
A. Implementation details

A.1. Model setup

For the experiments in the main paper, we implement
cascade r-cnn R50 with FPN as our baseline model. In
the training phase, input images are resized to multiple size
with (1333, 640), (1333, 672), (1333, 704), (1333, 736),
(1333, 768), (1333, 800). We do not apply other augmen-
tation except the horizontal flipping. For the region pro-
posal network (RPN), we use the default setting as sam-
pling 256 anchors with a 1:1 ratio between the background
and foreground. After that, 512 proposals are sampled per
image with a 1:3 foreground-background ratio for the sec-
ond stage. For the cascade head, we use three stages: box,
class, and mask predictor for each stage. Also, we set the
IOU threshold as 0.5, 0.6, 0.7 in the three stages, respec-
tively. Our baseline model is optimized by stochastic gra-
dient descent (SGD) with momentum 0.9 and weight decay
0.0001 for 20(LVIS)/12 (COCO-LT) epochs, with an initial
learning rate of 0.02, which is decayed to 0.002 and 0.0002
at 16(LVIS) /8(COCO) epoch and 18(LIVS)/10(COCO)
epoch respectively. All of the experiments are processed
with 16 GPUs with a total batch size of 16. We resize the
input images into (1333, 800) in the testing phase and only
use random filp augmentation.

A.2. Experiment setup

The all implementations of our model are based on the
MMDetection platform [9] and Pytorch [32]. All the mod-
els are trained with 8 Nvidia V100 GPUs, with a batch size
of 2 per GPU. In all the experiments, the models are trained
with 20 epochs, except for fine-tuned training methods that
only trained the fully connected layers in classifiers such as
(3) and (5) in Table 2. We use the SGD optimizer with a
0.02 learning rate and decays our learning rate at the 12th
and 16th epochs with 0.1 factor. Also, we warm up our
model at the first 1000 iteration by linearly increasing the
learning rate from 0.002 to 0.02.

A.3. Implementation of other methods

Repeat factor sampling (RFS) [16] was proposed in the
LVIS dataset original paper at the same time. In this section,
we report the implementation details of other methods in
Table 2.

Repeat factor sampling (RFS) We directly apply the
RFS package in MMDetection platform. However, we ap-
ply two different training schemes to the RFS model: (i)
End-to-end training with RFS (threshold = 0.001) (ii) Based
on our baseline model (1), only fine-tuning the fully con-
nected layer in classifiers of the prediction head with RFS
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Figure 5. We align categories of COCO and LVIS and sample the
corresponding number of instances for each COCO category. Note
that, red line denotes the data distribution of COCO-LT dataset,
black line indicates the corresponding number of instances for
COCO dataset to matched the long-tailed distribution of LVIS, and
green line represents the data distribution of the original COCO
dataset. Also, note that their instance number sorts the categories.

(threshold = 0.001). The results of these models are shown
in models (2) and (3) in Table 2.

Focal loss Focal loss [28] re-weights the cost at image-
level for classification. Like the RFS method, we implement
focal loss on the baseline model with two different training
schemes: End-to-end and fine-tuning F'c in the classifier.
In the end-to-end training, we directly apply sigmoid focal
loss at the proposal level. In the fine-tuning method, we first
initialize the model with the baseline model (1). Then we
apply sigmoid focal loss on the classification head to fine-
tune the only classifier (W, b).

EQ loss and seesaw loss EQLoss [41] and Seesaw
loss [44] are similar methods for long-tailed classification,
which reduce the negative gradient on tail classes by mod-
ifying on original cross-entropy loss. For EQLoss [41], we
directly utilize the official code [3] and apply it to our base-
line model to do end-to-end training. For seesaw loss, we
use the unofficial implementation code in [4] to do end-to-
end training.

Classification Calibration Head Classification calibra-
tion [45] is another training framework for long-tailed ob-
ject detection. First, we initialize the model with our base-
line model. After that, we fix the whole model’s parameters
except for CChead and train the classification calibration
head for 12 epochs with the same setting as in [45]. Finally,
in the inference phase, we combine the original classifica-
tion head and the classification calibration head to achieve
the final score for the prediction.



ID Models Backbone ImAP™ |AP;" AP]" AP}'|mAP
(1) Baseline Cascade R50-FPN 19.7 | 1.0 18.0 29.9]22.1
(2) MEC-Net Cascade R50-FPN 223 | 5.4 223 29.8(25.0
(3) MEC-Net-cos Cascade R50-FPN 259 |17.2 259 29.6(28.9
(4) MEC-Net-cos HTC R101-FPN 27.9 [18.6 29.7 314|318

(5) MEC-Net-cos + SyncBN + DCN HTC ResNeSt200-FPN| 35.4 (23.4 34.1 40.8 | 38.1

Table 4. The bounding box results and mask AP compared our method with other state-of-the-art methods on LVIS wal set. Note that we

denote AP™ as average mask precision, for instance, segmentation.

Balanced GroupSoftmax (BAGS) method BAGS [26]
is a recently proposed method that tackles the imbalanced
problem in the classifier via dividing the categories into
many groups according to the number of instances and ap-
plying the softmax function independently for each group
when fine-tuning the classifier. We directly use the officially
released code from [!] to implement the model in Table 2.
Firstly, We train the standard cascade r50 model for 20
epochs. Secondly, following the setting in BAGS [26], we
erase the parameters of classifiers and then train the classi-
fiers only while applying the GroupSoftmax for 12 epochs.
The results are shown in model (10) in Table 2.

De-confounded TDE method De-confound [42] with
TDE inference is a recently proposed method for long-tailed
classification. This method contains two components: ()
De-confounded classifier (ii) Total Direct Effect Inference.
We use the officially released code in [2] to reproduce the
result on the LVIS dataset. We set the head as two for the de-
confounded classifier, and the scale for input x is 8. Also,
the weight of the causal norm is 1/32. After the end-to-end
de-confounded training, we apply total direct effect infer-
ence with o = 1.5. The results are shown in model (11) in
Table 2.

B. Details about COCO-LT dataset

To confirm the effectiveness of our model, we construct
the COCO-LT dataset to verify our MEC-Net further. To get
a dataset with similar long-tail distribution as LVIS, we first
sort all categories of LVIS and COCO by their correspond-
ing number of training instances. As shown in Figure 5,
we align the categories of the COCO and LVIS dataset and
calculate the number of training instances per category in
COCO-LT based on its corresponding categories in LVIS.
After setting the target number of instances for each cate-
gory, we apply image-level sampling on the COCO dataset
to fit the target number for all categories as well as possible.
However, because we apply image-level sampling, it is im-
possible to get an instance number for each category, which
perfectly matches our target instance number. Therefore,

we ignore the target instance number of the top 10 cate-
gories with the most instances. That is, the instance num-
ber of these classes might be less than their target instance
number. In this way, other categories can perfectly match
the target instance number by image-level sampling from
the COCO dataset. The final distribution for the COCO-
LT dataset is shown in Figure 5. COCO-LT only contains
16,966 training images of 80 categories, which includes
128,615 training instances. For validation, we use the same
validation set as COCO val 2017 split, which includes 5000
images.

C. Additional Results
C.1. Results: Better backbone

In this section, to further confirm the performance of our
MEC, we apply our method on LVIS with a better backbone
and other training/testing tricks. The results are shown in
Table 4.

Baseline We utilize the Cascade R-CNN with R50-FPN
as the backbone for our baseline model (1). Other training
settings are the same as the settings in Section A.1.

Multi-expert cascade network Our final result with bet-
ter backbone and training tricks is shown in model (5) in Ta-
ble 4. In this mode, we utilize HTC with ResNeSt200-FPN
as our backbone and apply end-to-end training with DCN
and SyncBN methods. We apply testing time augmentation
(TTA) in the testing phase, including randomly flipping and
multi-scale testing input. Finally, We achieved mAP 35.4
on the LIVS dataset. It is worth noting that the performance
of tailed classes achieves 23.4 in mask AP score.
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